
EIC Proposal for a Scalable, Deadtime-free,
Trigger-less Readout Scheme

R. Abruzzio, J. Balewski, J.C. Bernauer, B. Buck, R. Corliss,
C. Epstein, D.K. Hasell, R. Milner, R. Redwine, J. Stevens, and

M. Williams
Laboratory for Nuclear Science

Massachusetts Institute of Technology
Cambridge, MA 02139

June 28, 2014

Abstract

We propose to develop a modular, scalable, streaming readout scheme for
future EIC experiments. To do this we will produce a sample system to study
the design and implementation. The resulting scheme would permit a cost-
effective, deadtime-free readout system and a flexible software system replac-
ing the traditional hardware trigger. Our approach differs from those being
adopted by other experiments like LHCb and ALICE. We will organise the
data on FPGAs and complete the event build by sending them specific com-
puter nodes via Ethernet. Event classification algorithms will run on virtual
machines on these same computer nodes. We will explore the boundaries of
offloading peak processing needs to local and commercial cloud computing
providers to lay the ground work toward integration of the future EIC DAQ
with the offline computing structure of a future EIC host laboratory.

With the high luminosity expected at EIC such a streaming readout system
will be necessary. It is important to make this study and decide of a scheme
now, so the detector systems currently being developed can be optimized for
chosen readout system.

1



1 Introduction

Until very recently nuclear and particle physics experiments collected data by con-
necting the detector signals to commercially available modules (e.g., ADCs, TDCs)
or to specially designed electronics (e.g., ASICs) that converted the signals into a
digital format suitable for computer analysis. Typically these units stored or buffered
the data until a readout request was received, after which the data would be serially
transmitted to the data acquisition computer(s) or pipelined pending a subsequent
readout request or abort signal. The readout request would be sent to some or all
of these units depending on the result of a trigger algorithm that was fed a small
volume of data that could be made available quickly. The readout decision had to
be made timely enough that the various buffers would not overwrite the event before
it was requested. Once requested, the readout time was typically large compared to
the raw rates in the detectors, imposing a finite deadtime before another event could
be successfully read out. This scheme imposes limits on the complexity of the trigger
logic and on the maximum rate of accepted events that become more prohibitive as
the instantaneous luminosity of an experiment increases.

In order to take full advantage of their high luminosities, many modern experi-
ments [1–3] take a different approach to data acquisition. Instead of sending readout
requests for individual events, the entirety of the data produced by the detectors is
processed and streamed in real-time. The various data streams are collected together
in arrays of networked computers which combine the various streams to form can-
didate events. The data for these candidate events are then passed on to a further
array of computers for analysis and storage. For example, the LHCb scheme is shown
in Fig. 1.

The future Electron Ion Collider, [4] (EIC) with an expected luminosity on the
order of 1034 cm−2s−1, will need to have a readout system with a similar capability.
This scheme needs to be developed now so that the EIC detectors being designed
do so with the adopted readout scheme in mind. For example the detectors should
not require a trigger. Similarly the detector, with knowledge of the method used to
combine hits to form events and how reconstruction will be performed, can optimise
its readout accordingly.

We propose to develop and study a design for a streaming, high rate, scalable
readout system. We focus on the data transport from the front-end electronics (FEE)
to the analysis computers but also address the event classification problem. While a
single detector channel stream has the information for all times, the event analysis
needs the information from all channels for the time period of a potential event. Our
approach collects the data accordingly and transmits it to separate CPUs.

2



Figure 1: The LHCb readout scheme [1] uses 8,800 optical fibres to carry the digitized,
zero-suppressed data from the detector 300 m to the surface based data acquisition
system. The streams of data are collected in an array of 500 networked computers
that build the events. The events are then passed through high speed switches to
sub-farms of computers for analysis and storage.

3



While we do not design any front end electronics specifically for this proposal (we
will simulate the data from the detector using a FPGA based data generator), we
presume that the front end electronics for the detector will provide streamed data
for each channel without the need for an external trigger. As will be described in
Sec. 2, the front-end electronics will stream zero-suppressed data and add a time
stamp and channel identifier to each hit. This simple step done in the front end will
greatly simplify the sorting of the various hits in the readout network.

Many data channels will be combined to efficiently use the available bandwidth
of the data distribution modules (DDM). These modules will use the time stamp in-
formation to collect data within a certain time window and transfer that information
as a package to a specific analysis computer for reconstruction and storage.

These data distribution modules provide the functionality of the event builder
PCs of the LHCb and ALICE proposals. We believe the proposed architecture using
FPGAs will be more efficient, simpler, and more cost effective.

2 Design Approach

An overview of the proposed readout scheme is illustrated in Fig. 2. The readout is
implemented in two stages. The first stage (shown in yellow) is a hierarchical readout
network which combines the information from many channels. This concatenation
of the input streams optimally uses the available bandwidth on the distribution
modules. The second stage (shown in blue) consists of the distribution network that
transfers the information from these modules to a specific CPU according to the
time-slice for classification and conditional storage.

The data acquisition system is composed of several components:

• Front end electronics (FEEs): This includes the analog front end, the analog-
to-digital converter (ADC) (or time stamping TDC, etc.), and some logic to
produce zero-suppressed information, which is output via a high speed fiber
link. In this proposal, this component will be simulated by an FPGA based
data generator.

• Concatenation modules (CMs): These boards have several fiber links as input
which are combined to form a single output.

• Data distribution modules (DDMs): These modules receive as input the data
from the FEE or CM boards and send the data corresponding to the same time
slice to the same CPU node via a switched network, such as Ethernet.

4



Readout Network Data Distribution Network

Sync
logic

FEE DDM

FEE

FEE
CM

DDMFEE
CM

FEE

FEE
CM

CM

FEE

Switch

CPU

CPU

CPU

CPU

CPU

CPU

Storage

Figure 2: The proposed readout scheme, divided into readout (left, yellow back-
ground) and distribution (right, blue background) networks. Detector information is
digitized by the front-end electronics (FEEs). Depending on the number of channels
and the data rate within an FEE module, the data stream can either be directed
directly (top) to a data distribution module (DDM), or concentrated (bottom) using
concatenation modules (CMs), which can be further cascaded up to the bandwidth
limits of the connections. The DDMs sit at the border between the readout and
distribution networks, sorting the incoming data packets by time-slice and sending
the data as Ethernet packets into a standard commercial Ethernet switch with ap-
propriate bandwidth. The DDMs label all data packages from the same time-slice
with the same target address so they reach the same CPU. Each CPU receives the
full information for a time-slice and can analyze the event. If the event is interesting,
it will be written out to the storage backend. Synchronization of the FEE clocks,
which is necessary to properly label time-slices, is maintained by a distributed clock
signal. Only the modules on the left (darker yellow background), i.e., FEE and clock
sync logic, are detector specific.

5



• Event reconstruction is performed on the CPU for each time slice.

• Accepted events are committed to long time storage.

Except for the header of a data packet, which must contain a time stamp, the readout
system is independent of the type of data sent by the FEE.

We introduce the concept of the time-slice, a period slightly longer than the
longest event duration, i.e., the longest possible time interval between two signals in
the detector that are associated with the same physics event. Time-slices are non-
overlapping and labeled sequentially, hence any event is contained within at most
two consecutive time-slices.

If different detectors have widely varying intrinsic event durations, it is feasible
to have different time-slice durations for different parts of the readout network. The
only requirement is that all sources feeding into the same DDM have synchronized
time-slice numbers. For example, in a two detector setup consisting of a fast and slow
detector, the time-slices of the fast detector can be collected and analyzed before the
slow detector data assembly is finished. Then, in a second step, only already pre-
analyzed and marked-as-relevant data from the fast detector have to be matched to
the information of the slow detector by the CPU farm.

The readout network collects packets tagged with each time-slice number. The
DDM looks up the target network address using the time-slice number. For each
target CPU, the DDM manages a FIFO buffer. When the FIFO is close to full, the
aggregated data is sent over the Ethernet network to the target CPU. The mapping
of time-slice to CPU is flexible, and some data must be replicated to ensure deadtime
free operation. In the most extreme case, each time-slice is mapped to two CPUs,
once together with the preceding time-slice, and once with the next time-slice. In
this way, each event is fully contained in the data received by at least one CPU.
This mode has the smallest latency, but also the highest bandwidth demand, as each
datum is sent twice. Fig. 3 illustrates the data flow for this case.

It is also possible to map blocks of consecutive time-slices to the same CPU. This
can dramatically reduce the overhead to guarantee that any event is completely in
the buffer on one CPU since only the data for the last time-slice of each block has to
be duplicated. For example, sending 1000 consecutive time-slices to a given CPU, the
over head is reduced to 1 per mil. In this mode of operation, forgoing the duplication
would create negligible deadtime. One has a minimal bandwidth overhead, but needs
larger buffers in the switching fabric and introduces additional latency.

The proposed design is flexible in this regard and allows experimenters to choose
an optimal balance of bandwidth and buffer size for their needs.

6



The CPUs now have the full information for a time period covering a possible
interesting event (or events). They can now decide whether to keep the data or not.
If this decision can be computed before the next time-slice block arrives, it can be
made on that machine directly. If not, the target CPUs can act as gateways to a
larger cluster. Since they already have the complete information to an event, they
simply have to pass it on to the next available CPU in the cluster.

3 R&D

3.1 Front-End Protocol

The front-end electronics will be detector and experiment specific and can only be
developed together with the detectors. We therefore focus on developing a protocol
for transmitting data through the network and producing a reusable set of firmware
modules that will allow the detector and experiment designers to easily integrate
their front end electronics with the data acquisition system. The full design of the
front-end electronics is a task for the group developing the specific detector keeping
in mind the requirements of the readout system..

A hypothetical design for a front-end board is shown in Fig. 4. In this design
the analog data are sampled and then run through a zero-suppression algorithm
producing information about, e.g., hit amplitude and time-of-event arrival.

As part of our initial investigations, we will design data generators to simulate the
front-end electronics of a detector and feed data into the rest of the data acquisition
system. These will run on FPGA development boards and will be available for testing
throughout the development process. The simulated design has a variable number of
input channels. We assume that each channel is being sampled at 40 MHz with 8 bit
resolution. We expect per channel event rates of 100 kHz. After zero-suppression,
each event is described by a payload of 10 bytes, yielding an average data rate of
1 MBytes/s per channel. A 256 channel module will produce an average rate of 2
GBits/sec which is easily manageable by an FPGA driving a commercially available
optical link.

These specifications (channels per board, frequency, resolution and event rate)
represent what we expect some typical detector technologies may utilize. However,
we plan to produce a robust protocol and firmware core which can be used with a
broad range of detector specifications.

7



FEE 6

FEE 5

FEE 4

FEE 3

FEE 2

FEE 1

DDM 1

TSN+1,CH1

TSN ,CH1

TSN+1,CH3

TSN ,CH3

TSN+1,CH2 TSN ,CH2

FIFO 1
TSN CH1-3

TSN+1 CH1-3

FIFO 2
TSN+1 CH1-3
TSN+2 CH1-3

FIFO 3
TSN+2 CH1-3
TSN+3 CH1-3

DDM 2

TSN+1,CH4

TSN ,CH4

TSN+1,CH6

TSN ,CH6

TSN+1,CH5 TSN ,CH5

FIFO 1
TSN CH4-6

TSN+1 CH4-6

FIFO 2
TSN+1 CH4-6
TSN+2 CH4-6

FIFO 3
TSN+2 CH4-6
TSN+3 CH4-6

Switch

TSN
CH1-3 & CH4-6

TSN+1
CH1-3 &CH4-6

CPU 1

TSN+1
CH1-3 & CH4-6

TSN+2
CH1-3 &CH4-6

CPU 2

TSN+2
CH1-3 & CH4-6

TSN+3
CH1-3 &CH4-6

CPU 3

To:CPU 1

To:CPU 2

To:CPU 3

To:CPU 3

To:CPU 2

To:CPU 1

To:CPU 1

To:CPU 1

To:CPU 3

To:CPU 3

Figure 3: Data flow of the readout for a small scale system. Six FEE modules,
each serving one channel in this example, send their data stream to two DDMs.
Each link transports the information for all time-slices (TS), but only for the single
channel (CH). The DDMs sort the incoming stream into FIFOs by time-slice number,
duplicating the information into two FIFOs each. The data of a full FIFO are sent
via Ethernet to the switch, addressed to the corresponding CPU. The CPU receives
data from all DDMs for each time-slice pair assigned to it. Once the full information
of an event is available, the algorithms running on the CPUs can decide whether to
keep or drop the data.

8



MUX
Output

AFE ADC 1 Zero suppression FIFO 1Analog in

AFE ADC 2 Zero suppression FIFO 2Analog in

AFE ADC 3 Zero suppression FIFO 3Analog in

AFE ADC 4 Zero suppression FIFO 4Analog inN
ch

an
n

el
s

Analog front end:
Charge amplifier

and shaper

BW: 20 MHz

ADC
8 bit

40 MHz

40 MByte/s/ch

Detects peaks
Packetizes information

avg. 1 MByte/s/ch

Discrete
or ASIC

8 Ch/Chip
ADC

one or more FPGA

Figure 4: A hypothetical front end electronics (FEE) board has N parallel input
stages. First, the analog input is processed by the analog front-end (AFE), which
can be realized either with discrete components or highly integrated ASICs. This
part could be separated out into a separate module, close to the actual detector.
Behind the AFE, the signal bandwidth is limited to about 20 MHz, which reduces
the requirements for the cable connection between AFE and ADC. The ADC stage
can be realized with commercial 40 Megasamples/s, 8 channel ADCs. It digitizes the
analog signal and produce an output stream of 40 MByte/s. The zero-suppression
units detect peaks in this digital stream and generate packetized information about
peak timing and shape. The data is tagged with the time-slice number at this stage
(not shown) and moved into a FIFO buffer. The output mux mixes the packetized
information onto the output data stream.

9



3.2 Concatenation Modules

Different front-end boards will have different maximum data output rates, depending
on the number of channels, payload size and event rate. To utilize the DDM boards
fully, we are planning to build concatenation modules (CMs), which combine multiple
input streams to a single output stream. In R&D, we have to decide whether these
boards should be “dumb”, just multiplexing the input streams, or “intelligent”, by
combining input packages with the same time stamp. While the latter is more logic
intensive, it also decreases the protocol overhead on the output link.

Initially, CMs will be produced using FPGA development modules attached to
commercially available optical transceiver modules. This will let us test various
aspects of the design before committing to a reference design. The reference design
for this board, along with the firmware to run it, will make up part of the deliverables.
Having a working reference design will allow groups with limited engineering access
to integrate with the data acquisition system with minimal engineering.

3.3 Data Distribution Modules

The data distribution modules (DDMs) are the core element of the design. They
receive a data stream from CM or FEE boards which contains time-slice tagged
and packetized data. These modules sort the data by time-slice and send data to an
appropriate computer via Ethernet using commercially available optical transceivers.

Significant effort is required to define the inner workings of this protocol and to
make it as universally useable as possible. We will initially develop this protocol
and firmware to run on an FPGA development board. This will be connected to
a high-speed Ethernet switch and a small computer cluster in order to verify the
performance of our design.

Once a protocol and design has been proven, we will develop a reference DDM
design and firmware to run the DDM hardware. It is highly likely that an experiment
or detector using our data acquisition system would be able to use our DDM design
with no modifications.

3.4 Event-Processing Nodes

The more detailed block diagram of the compute cluster is shown in Fig. 5. Once a
complete event arrives from multiple DDMs to a single compute node (see Fig. 3),
the event classifier algorithm is executed on one or more of the cores of this node.
In general, there may be multiple stages of the classifier algorithm with increasing
complexity, but reduced number of input events to reduce the average decision time.

10



DDM

DDM

DDM

DDM

DDM

DDM

10 Gb/s

Ethernet
Switch

12 Ports
40Gb/s

Dell 1950
2 TB disk

10 Gb/s

end-storage node

10 Gb/s

64 Core Server
512 GB RAM
24 TB disk

Ethernet
card

40 Gb/s

64 Core Server
512 GB RAM
24 TB disk

Ethernet
card

40 Gb/s

64 Core Server
512 GB RAM
24 TB disk

Ethernet
card

40 Gb/s

64 Core Server
512 GB RAM
24 TB disk

Ethernet
card

40 Gb/s

Readout from experiment 256-core compute cluster

Figure 5: Block diagram of compute cluster for parallel classifying of events. Each
compute core on each server receives the data for a common time slice from multiple
DDMs. If the load exceeds the computing capacity of that core, events can be either
deferred to local disks and/or sent to a remote computer (cloud) for evaluation. To
simulate the data end-storage we envisage a small computer.

11



Typically only a small fraction of the events will be accepted and the raw information
from those sent to the end-storage node. We will evaluate different data processing
strategies, e.g. parallel mode, where each event is analyzed independently by one
core, or use data parallelism, where each sub-step of analysis is applied synchronously
to multiple events before the next sub-step is performed.1

The compute cluster assembled for this project will allow us to deploy and evalu-
ate the timing and the RAM requirements for some of the existing event classification
algorithms for comparable-in-size experiments, developed by some of the authors.
We would deploy the di-jet finder algorithm implement on the STAR L3-software
trigger using a traditional cut-based selection [5], and a variant of a boosted decision-
tree trigger algorithm developed for LHCb and intended to be used by the GlueX
experiment [6,7]

To improve robustness in the case of the system overload due to either too high
input data rate or too slow event processing we will explore two independent fail-safe
mechanisms:

• A fraction of events can be temporarily stored on the local disks of the compute
nodes for processing at a later time when the data acquisition is halted for other
reasons.2 With the local disk of 24 TB per compute node we will be able to
‘defer’ some of events for up to 10 hours, assuming only 3/4 the events streamed
to the node at a rate of 3 GB/s can be processed instantly.

• Alternatively, one or more virtual machines (VM), similar to the compute nodes
with respect to the core count and RAM/core capacity, will be launched at a
local private or remote commercial cloud. The fraction of conditionally ac-
cepted events can be sent to the those VMs for a time consuming classification
and only the (small in size) decision result would be returned. The STAR
experiment has exercised the near-real-time data processing on a remote pri-
vate cloud [8] within the Magellan project. In the actual EIC experiment this
“cloud” is likely a common, laboratory-wide computer cluster.

The commodity compute nodes are selected to be on the high-end of today’s
computing standards: 64 cores per server, 8 GB RAM per core, large local disk, and
a 40 Gb/s Ethernet card. The complete list of hardware components required by
the compute cluster is listed in Table 1. It is understood, that, for the EIC era, the
computing industry will provide next generation CPUs with a much higher number
of cores as commodity hardware. The objective is to develop the functioning software

1E.g., LHCb model is to process each event on a single core but process 30k events simultaneously.
2This approach has been used at the LHCb experiment where it is referred to as a ‘deferral’ [1].

12



framework capable to achieve the nominal factory specs of the hardware at a level
of 70%. The software is the ’added value’ of this segment of this project.

13



Table 1: Hardware Specification for 256-core compute cluster used in this trigger-less
DAQ project.

Equipment Qty

Compute Node 4
4x 16 cores CPUs, 24 TB local disk w/ writing speed of 500-700
MB/s, 512 GB RAM, single-port QSFP 40 GigE Network Card,
example vendor : Microway Navion QuadPuter

End-storage + OpenStack Controller 1+1
Dell 1950, 2TB disk, 1Gb/s Ethernet

Ethernet Switch 1
12-ports QSFP 40/56GbE, switching capacity above 1Tb/s, ex-
ample vendor : Mellanox SwitchX SX1012

Network Interface Cards 2 spare
40 Gigabit Ethernet, example vendor: Mellanox Connect X-3

Other Network Cards
Mellanox 10 Gb/s Ethernet for Dell 1950 2
Cisco Xenpack 10 Gb/s for MIT firewall to the world 1

Copper Cables QSFP-QSFP 4+2 spare
Passive 40Gb/s, 2m long

Copper Hybrid Cables QSFP-4xSFP+ 1
passive 40Gb/s, 5m long
(with) Mellanox network adapter QSFP-SPF+ 1

Rack with shelves, power and cooling 1

14



3.5 Virtualization and Elastic Cloud Computing

We will add the virtualization layer to compute nodes, preferably using OpenStack [9],
to isolate our software from the hardware specific differences and assure reproducibil-
ity of event classification locally and on the cloud. The same VM image will run
locally and would be transferred and deployed on the cloud facility.

One of the goals of this proposal is to explore the potential issues and overall per-
formance when a fraction of recorded events is classified on remote cloud computing
facilities. We will integrate with our virtualized compute cluster and evaluate two
such sites:

• MGHPCC at Holyoke, MA [10]

• Commercial Amazon EC2

Running (for brief period at a time) on the Amazon EC2 will allow us to verify
the performance of the event classifier algorithm on a 1000+ core cluster, larger than
our local 256-core cluster. The Holyoke cluster will let us test how a partnership
with a state sponsored local computing cluster works on a longer time scale. We
would like to set up a quasi-permanent and cost effective high bandwidth Ethernet
connection to the Holyoke computing center and test the long time scale stability of
simultaneous local and remote events processing.

The long term goal of exploring the feasibility of elastically scalable cloud com-
puting for the real time data acquisition is to develop a scheme of re-factoring of
the offline computing farms at Jefferson Lab or BNL to be partially aggregated with
the EIC DAQ. This would allow us to assume a lower safety margin for EIC DAQ
peak throughput and hence reduce its cost. Use of virtualization to run the event
classification process will enable those explorations.

It is worth noting that LHCb and CMS are using their trigger farms for generating
MC when the LHC is down and having this fast connection between the lab-wide and
experimental CPUs would enable the trigger farms to effectively become part of the
distributed offline Tier-0 site during accelerator down time. The VM-based elastic
cloud computing scheme developed within this proposal will allow for 365 days/year
use of nominally a ”trigger farm”. If the VMs work for the trigger running on the
central resources then that should work in reverse, i.e., running VMs on the trigger
farm during experiment down time can work for the Tier-0 farm for an arbitrary
offline tasks.

Some of the authors have experience in setting up and maintaining a local com-
pute cloud, see Fig. 6. We have measured performance on our local OpenStack
cluster built on Dell 1950 blades connected via 1 Gb/s Catalyst 4000 switch [11]

15



• CPU losses due to virtualization of 3.5%, for in-memory computation w/o any
I/O to disk

• 4% losses in data transmission from VM to the remote location from the blade
hosting this VM vs. from bare-metal OS on the same blade to the same remote
location.

The 4% losses in performance expected from virtualization of the compute nodes
is more than compensated for by the ease of maintenance and uniform performance
that virtual machines provide, especially when the compute nodes may physically
reside on remote hardware to which the experiment may have little or no direct
access.

Figure 6: Local OpenStack VM Cluster at LNS/MIT consist of 20+ 8-core Dell 1950
compute nodes, several Dell 2850 controllers, 3 Catalyst 4000 1Gb/s switches. The
total size is of 200+ cores and 400+ GB of RAM. Some of those blades and the
empty rack seen on the left will be used in the proposed project.

16



3.6 Miscellaneous Design Objectives

For configuration and control, a (low speed) back channel to the FEE, CM and
DDM elements is needed. We want to develop a flexible and scalable protocol for
this purpose.

While the average data rate is easy to model, most experiments can produce
data in bursts, since the time between events has an exponential distribution. To
guarantee no event loss, the bandwidth needs to be calculated with the maximum
rate, not the average rate. With buffers and channel bundling, we can reduce this
effect and produce essentially deadtime-free operation with a bandwidth closer to
the average value. However, it is then possible to have buffer overruns in extreme
cases. The design will have accommodation for such an occurrence.

3.7 Scalability

The design is scalable to high channel counts and high event rates, both on a single
channel and aggregated over all. The FPGA interconnect speed sets the maximum
number of channels on a FEE board. The limit is about 8 GBit/s on a single channel,
which would saturate currently available fiber links.

If the data rate of one DDM is exhausted, it is possible to extend the system
with multiple, parallel DDMs connected to the same switching fabric. This allows
the number of channels to scale almost arbitrarily, limited only by the maximum
size of the switching fabric. Since Ethernet is the standard technology used in high
bandwidth environments like data centers or internet exchanges, systems with mas-
sive backplane bandwidth (multi-TBit/s) and port count are commercially available.

4 Deliverables

4.1 Deliverable Summary

4.1.1 Readout Network

There are three main deliverables for the Readout Network segment of this project.
They are:

• Reference firmware for a detector specific front end module

• Reference design and firmware for a data distribution module

• Reference design and firmware for a concatenation module

17



By producing these reference designs as our main deliverable, we make the project
as flexible as possible. Smaller future projects will be able to use the reference designs
for their purposes and larger future projects will be able to use the reference designs
to inform their own custom designs and thus reduce the engineering needed. This
also allows the project to be easily upgradeable as faster and larger FPGAs become
available.

4.1.2 Compute Cluster

For the compute cluster the main objective is to develop the software and the scheme
for the following action items:

• setup local virtual cluster on the compute nodes

• develop and vet the virtual machine (VM) image running locally, on Amazon
EC2, and at Holyoke computing center

• develop and test software running inside VM capable of assembly of the sub-
events from DDMs into full events, running sustainably at a high data rate

• implement and vet examples of event-classifier algorithms running on VM

• vet those event classifiers on a 1000+ core cluster

• develop and test the scheme for deferral of event processing if the local cluster
is too busy

• develop and test the scheme for sending events to a remote compute cluster for
evaluation

4.2 Follow-up Prospects

The compute cluster infrastructure developed for this DAQ proposal has a potential
beyond the objectives we are planning to deliver. Those potential tasks also relevant
for the future EIC, are listed below, the ’low hanging fruit’ which can be selected
by new members of this project joining it at a later time and having the man-power
resources to work on them.

• Use of compute cluster for Monte Carlo simulations at the time the experiment
is not taking data.

18



• Test of more advanced event classifiers on parallel compute system of 256 cores.

• Experiment on integration of this compute cluster with a subset of machines
at Jefferson Lab or BNL computing farms.

• Full design of the front-end electronics for a real detector system.

5 Approximate Schedule

5.1 First year

In the first year we will procure much of the equipment needed to complete the rest of
the project. This includes a high speed oscilloscope for board-level debugging, FPGA
development boards to be used throughout the development process. Much of this
first year will be spent developing a working prototype for the protocol between the
different modules in the design and then starting the design of the reference design
for the DDM. In parallel, the data generators will be developed for use during the
rest of the development.

We will acquire one compute node and the Ethernet switch. This basic setup will
allow us to test the FPGA design for the data transfer from the DDM equivalent
FPGA development board to the node. In parallel the OpenStack controller deployed
on the Dell 1950 (already in our possession) will be connected to the compute node
and we will exercise generation, deploying, stability, and agility of the virtual ma-
chine image while running processes for receiving data from FPGA. We will exercise
instantiation of the same VM image locally and on Amazon EC2.

5.2 Second year

In year two we will procure and test the reference design of the DDM as well as
debug and refine the protocol. The CM will be designed, produced, and tested.

Two more compute nodes will be acquired. The compute cluster will then consist
of three 64-core blades, and there will be 10 Gb/s connection to the outside world.
With three compute nodes one will be able to exercise a non-trivial event building
using mock data received from a few DDMs. Also we will establish a high speed
data transfer connection with the Holyoke computing center, deploy our VM image
there, optimize the data transfer method. In parallel the work on implementation of
the STAR event classifier on VMs will proceed.

19



5.3 Third year

Year three will be used to test out the reference design. This will be thoroughly
tested and documented to facilitate technology transfer to other groups interested in
using the system. In addition, we plan on investigating how technology not available
in year one, but available in year three, can be used in the design.

The compute cluster will reach its full capacity of 256 cores. We will be able to
evaluate the full chain of data processing (see Fig. 2 ) under the full load from all 4
DDMs streaming at 8 Gb/s to 4 compute nodes. We will implement and evaluate
performance of the machine learning event filtering. We will demonstrate offloading
of the peak computing needs to Holyoke and/or Amazon EC2. We will test the event
classifier on a 1000+ core cluster launched on Amazon EC2.

6 Funding Request

To develop this readout system we request funding to cover the design, purchase
and assembly of a complete system limited to a relatively small number of simulated
detector channels. This will serve to test all aspects of a larger, general purpose
readout system.

To perform this work we request support for 0.9 FTE of an electronics engineer
spread over three years. The first year will likely require the largest effort in design
and procurement. Subsequent years will involve testing, modifying, and fine tuning
the design in addition to staying up to date on new developments and technological
improvements that could benefit the system being developed.

In addition to the electronic engineer we anticipate the close involvement of post-
doctoral physicists and graduate students to take responsibility for programming
and testing. To optimize the virtual machine cluster we anticipate the need for a
computer science graduate student who would help us for few months per year.

The requested support is outlined in Tables 2 to 4, with estimated costs to cover
equipment, component procurement, services, travel and manpower.

N.B. No contingency has been added to these numbers. They represent our best
estimate for the actual costs.

20



Table 2: Equipment, components, and services budget.

Item 2015 2016 2017
(k$) (k$) (k$)

Equipment exempt from overhead
5 GHz digital oscilloscope (LeCroy 760ZI-A series) 70.0
Reference DDM boards (6) 50.0
Reference CM boards (6) 40.0
Compute nodes (4) 18.0 36.0 18.0
Ethernet switch (1) 8.0

Components subject to overhead*, included
Dev. boards for DDMs (3, Virtex 7 Series) 21.9
Dev. boards for Data generation (4, Kintex 7 Series) 3.7 3.7
Data generation daughter boards (4) 5.5
Ethernet IP Core licence 5.5
Development workstation 9.1
Readout network optical links (10) 1.8 1.8
Next generation FPGA upgrades 36.6
Additional network cards (2) 2.4
Copper Ethernet cables (7) 0.4 0.8 0.4
Miscellaneous hardware 2.0 2.0 1.0

Services subject to overhead*, included
Compute units at Amazon EC2 9.1 9.1 9.1

Existing components in MIT possession
End-storage node (1)
OpenStack controller node (1)
Rack with power and cooling (1)

Total 149.5 151.3 65.1
* all overheads together are ∼81%

21



Table 3: Manpower and travel budget including overhead.

Item 2015 2016 2017
FTE (k$) FTE (k$) FTE (k$)

Engineers 0.4 81.5 0.3 63.0 0.2 43.4
Computer science graduate student 0.2 17.1 0.2 17.8 0.2 18.5
Computing conference travel 8.0 8.0 8.0
Total 106.6 88.8 69.9

Table 4: Total budget request including overhead.

Item 2015 2016 2017
Total 256.1 k$ 240.1 k$ 135.0 k$

22



7 Summary

With this proposal we plan to develop a modular, scalable, trigger-less, deadtime-
free, streaming readout system for data acquisition. The proposal also includes
studying the event reconstruction on a multi-core computer cluster connected to the
readout system. At the high luminosity planned for the future EIC experiments such
a readout and analysis scheme will be needed. It is important to study and specify
the scheme now so that the EIC detectors being developed can be designed with the
requirements of the readout system in mind.

References

[1] The LHCb Collaboration. LHCb Trigger and Online Upgrade Technical Design
Report. CERN/LHCC 2014-016, May 2014.

[2] Ananya et al. O2: A novel combined online and offline computing system for
the ALICE Experiment after 2018. J.Phys.Conf.Ser., 513:012037, 2014. doi:
10.1088/1742-6596/513/1/012037.

[3] The ALICE Collaboration. Letter of Intent for the Upgrade of the ALICE
Experiment. CERN/LHCC-2012-012, September 2012.

[4] A. Accardi et al. Electron Ion Collider: The Next QCD Frontier - Understanding
the glue that binds us all. arXiv.org, December 2012.

[5] Abelev et al. Measurement of Transverse Single-Spin Asymmetries for Dijet
Production in Proton-Proton Collisions at s=200 GeV. Phys. Rev. Lett., 99:
142003, Oct 2007.

[6] R Aaij, J Albrecht, F Alessio, S Amato, E Aslanides, et al. The LHCb
Trigger and its Performance in 2011. JINST, 8:P04022, 2013. URL
http://arxiv.org/abs/1211.3055.

[7] V. Gligorov and M. Williams. Efficient, reliable and fast high-level trigger-
ing using a bonsai boosted decision tree . JINST, 8:P02013, 2013. URL
http://arxiv.org/abs/1210.6861.

[8] J. Balewski et al. Offloading peak processing to virtual farm by STAR
experiment at RHIC. J. Phys. Conf. Ser. 368, 012011 (2012). URL
http://iopscience.iop.org/1742-6596/368/1/012011.

23



[9] OpenStack. Open source software for building private and public clouds. URL
https://www.openstack.org/.

[10] MGHPCC, Massachusetts Green High-Performance Computing Center at
Holyoke, MA [10], dedicated to research computing and funded by the Common-
wealth of Massachusetts, Boston University, Harvard University, MIT, North-
eastern University, the University of Massachusetts, and private industry. URL
http://www.mghpcc.org.

[11] J. Balewski. Aggregating local clouds with reusable tools.
Presented at OSG All-hands meeting, April (2014). URL
http://iopscience.iop.org/1742-6596/368/1/012011.

24


